

Position: Sr. Front End
Role: Dev Lead

I had to dive into golf and its
rules. And I thought that I had to
design a schema and front end
architecture (including
integration with AEM) on the
whole.

I used to play golf 15+ years ago
for a while in England. I enjoyed it.
First time I played it on PC AT 286

«Gentleman Only -
 Ladies Forbidden»

Golf was first mentioned in
Holland - 26 Feb 1426. Men
played this game using wooden
clubs and feather balls. Who
performed fewer hits before
putting a ball into far target (small
round hole) was the winner.

However it’s considered that the
true game was born in Scotland.

«Gowf», «Kolf» are variations of
game’s name, meaning «hit».

Truly or not the game was
reflected in king’s Jacob II statute
in 1452. The game was forbidden
because people prefered playing
to war training.

There is rumor that Scottish
peasants used rabbit holes for
playing.

Modern golf ball (previously
made of gutta-percha or feather)
was manufactured in 1900. It had
very good aerodynamics. So it’s
speed is around 270-320 km/h.

Golf was an official olympic
discipline only in 1900 and 1902.
After 114 years it was added to
the Olympic games programme
again.

Modern game and rules are not
far away from original. It looks like
they have become more formal.

Game field was defined more
accurately. Its complexity was
changed a few times.

Basically field (course) consists of
18 holes (every hole occupies a
large area containing obstacles
and other difficulties for players).

To put your ball into the hole you
have to carefully choose one
from 7 and more clubs and make
an accurate hit, taking into
account wind, ground levels,
grass type etc.

1 Tee (starting point, first hit)

2 Fairway (a good grass)

3 & 6 Water hazard (don’t put ball into it!)

4 Rough (a bad long grass)

5
7
11

Sand bunker (you should be a
master to save your score)

8 Flagstick

9 The hole (you will not find a rabbit)

10 Green (much easier area, but
sometimes ground levels are your
enemies)

An usual golf event has around 150 participating players.

The entry fee starts from 100 $ (for simple event) and ends at
1.2k $ for season.

Almost every golfer is associated with a club. Having salary
(approximately from 50k to 100k $) he/she can win 1 million
$ and more on major championship. Many golfers are
advertising special equipment and even products. Also there
are many activities and campaigns around the world.

Thus we see that golfers are fairly wealthy people though
they are not the richest.

Modern competition

➔ Has many stats related to
the whole competition and
specific players (e.g.
condor, albatross, eagle,
birdie, par, bogey
(double/triple), driving
distance, putts etc.)

➔ Match can be played even
on different courses and in
random order.

➔ All stats are recorded in
real time on the field.
Copters, tracking devices
(GPS for ball and player
position) and other stuff
are here to serve your
needs.

➔ Due to the nature of
competition there are
many places for typos.

Modern competition

➔ Players can play
side-by-side on the single
hole. Even rain or strong
wind can not stop them.

➔ Usually it takes a few days.

Non-trivial golf project goals

➔ Be PM/DM friendly.

➔ Be fast. Milliseconds
matter. Have KPI as low as
possible.

➔ Have isolated and hot
replaceable components.

➔ Live under high pressure.
1’000k requests per day
and more.

➔ Backup previous data.

➔ Be able to edit sport data
quickly.

Initial design Sport Data Provider

CDN

Data Transformator

Get from
cache?

Cache
Invalidator

Yes

Features

➔ Pages are aggressively
cached.

➔ Data transformation code
is running on getting
updates from provider to
produce sport feeds.

➔ Client apps make requests
through CDN but
occasionally pass to AEM.

➔ Easy integration.

➔ Relatively small
infrastructure.

➔ Easy deployment.

➔ Java implementation.

Sir, we are under attack!
Sport Data Provider

CDN

Data Transformator

Get from
cache?

Cache
Invalidator Video Transformator

Yes

Video Provider

Sport Data Provider

<?xml version=”1.0”>
<SportFeed type=”Strokes”>
 <Holes>
 <Hole id=”1”>
 <Score average=”4” />
 </Hole>
 ...
 </Holes>
 <Strokes>
 <Stroke player=”30925” hole=”3” ...

<?xml version=”1.0”>
<SportFeed type=”Leaderboard”>
 <Holes>
 <Hole id=”1” toPar=”5” />
 <Hole id=”2” toPar=”4” />
 <Hole id=”3” toPar=”3” />
 ...
 </Holes>
 <Leaderboard>
 <Player id=”30925” name=”Dustin” ...

<?xml version=”1.0”>
<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soa
p/envelope/">
 <soap:Body>
 <getQualifyingStatsResponse
xmlns="http://qualifying.provider.com/ws">
 <item type=”holeStats”>
 <item type=”holeStat” stat=”putts”
holeId=”1”>35</item>

Input

Video Provider

Sport Data Provider II

Transformation

Store

Sport Data Provider III

Results

➔ Cache invalidation became
too complicated.

➔ Maintaining of wrong sport
data takes much effort and
it is not possible for not
AEM developers.

➔ Client apps work slow. UX
is bad.

➔ To save consistency
across different client
platforms additional
business logic and
serialization is needed.

➔ As soon as the number of third-party providers grows AEM
performs redundant work which leads to high
consumption of RAM. Client apps request for updates
every 30 seconds.

Even
elephant

on a
rocket
within

spherical
vacuum

can not
help!

Final design

Data Transformator Transformator

Data Transformator II

Data Transformator

Transformator II

∞∞

Sport Data Provider

Provider

CDN

Blob

∞

Balancer

Microsoft Azure is cloud platform

➔ Hybrid cloud solution
which incorporates virtual
machines, databases,
isolated computing units
(app services/functions)
etc.

➔ Has DevOps friendly
interface.

➔ All services use internal
network.

App functions are computing
units which can be written in
major languages (e.g. Java,
.NET, JS) and can be
configured to run triggered by
request, timer, socket
connection etc. Those
functions are highly scalable
and configurable.
Deployment is easy and
convenient.

App function example

const DataTransformer = require(‘./transformers’);

module.exports = async (context, inputDocument) => {
 try {
 const xmlTransformer = DataTransformer.createXmlTransformer();
 const metaData = xmlTransformer.getMetaData(inputDocument);
 let outputDocument = ‘’;

 context.log.info(‘Transforming xml document’, metaData);

 outputDocument = await xmlTransformer.process(inputDocument);
 context.outputDocument = outputDocument;

 context.done()
 } catch (exception) {
 context.done(exception)
 }
}

Features

➔ All sport related business
logic and transformation
are isolated in
well-scalable app
functions.

➔ All computed results are
stored in a fastest blob
storage which uses wide
distributed CDN.

➔ All requests go through
CDN. If updated content is
needed balancer will catch
request first.

➔ Necessary AEM data for
computations will also be
fetched using CDN.

➔ AEM instances of different size are distributed across
various geo regions.

Results

➔ Using CDNs for every part
of the project all 1’000k
requests didn’t hit servers.

➔ Using scalable farm of
computable units in cloud
allows to perform hard
work out of AEM.

➔ All files in blob can be
edited even in notepad.

➔ Scalability works in
automatic or manual
mode.

➔ ASAP-fixing is available for
DMs/PMs.

➔ With help of Adobe
Analytics it’s possible to
configure proper AEM
instances per geo region.

➔ Problem ➔ Solution = SSOT*

Every client looks for a feed in
specific format/structure.

Differences on the latest
stages of the project can lead
to missing deadline. In sport
it’s an uncoverable severe
fault.

Use well-defined scheme
which describes every single
field and presentation form.

For instance Swagger
provides convenient APIs and
generators.

Making the schema more
universal is a good point. Let
client app render fields using
predefined formats which it
understands.

➔ Problem ➔ Solution

Slow page load.

Too many resources are
loaded not regarding real
usage of them.

Having many libraries as a
separate file wastes time for
parsing and loading.

Initial rendered JSON data for
JS framework can hang up
AEM and browser in case of
huge size.

Split JS and CSS bundles per
page. Modern and flexible
bundler can help (WebPack,
SystemJs, custom gulp
configuration).

It’s better to convert JSON
structures to a feed but
render initial data relatively
small.

➔ Problem ➔ Solution

Low page performance.

Very often it’s related to front
end design: memory leaks (not
unbind event handlers,
zombie references), loading
everything even if it’s not
visible yet, unnecessary
interaction with DOM, resource
intensive computations on
main thread.

Use modern
high-performance framework
which allows fine control of
events/data binding and
abstracts from DOM.

Try lazy loading.

Use «Web Workers API» or
delay computations on main
thread. Do not overuse
observers.

➔ Problem ➔ Solution

Sport data can have typos
and malformed data.

It can occur due to many
circumstances like bad
weather, changed conditions
(e.g. playing on other course)
etc.

Backup data introspectively.

PM/DM should be familiar
with tools to fix data issues. So
data format should be simple
and self-explanatory (close to
business). XML format works
but object-oriented (JSON) is
more convenient in most
cases.

➔ Use caching for every available feed and distribute
requests flow carefully.

➔ Data transformation should be performed in cloud
using lambdas/app functions etc. Take away
redundant load from AEM.

➔ Keep data mapping in declarative schema reflecting
API (e.g. Swagger).

➔ Split JS and CSS per page.

➔ Use high-performance JS frameworks. Pay attention to
incremental UI updates (Virtual DOM capable
frameworks like React/Vue.js etc. can work quite
effective), memory leaks, intensive computations.

➔ Your clients (e.g. web/mobile apps) should have only
presentation logic.

➔ Try to simulate event data population including
malformed and redundant data.

➔ Cloud infrastructure can save your life in one day.

➔ If something can go wrong it will go. Your server code
should not kill server if something fails.

➔ Have convenient and handful tools which allow you to
log and monitor activity in real time.

Sources

➔ Of course, I used wikipedia

➔ Moscow University Club

➔ TrackmanGolf.com

➔ GolfWeek.com

➔ GolfOnline.ru

➔ Lunka.ru

